CSE 451: Operating Systems
Winter 2022

Module 18
Meltdown

Gary Kimura



Reading Kernel Memory from User Space

* Three parts

* What is my cache? Pipelining and branch prediction.

* Use timing to determine if something is in the cache or
not.

 Asimple coding example to determine the value of a
byte.

A more complete description is in “Meltdown: Reading
Kernel Memory from User Space”, Communications of the
ACM, June 2020, Vol 63 No. 6, Pages 46-56.



Determining the value of a byte

e Consider this snippet of code to read a byte and use its value as an

index into an arr fﬂ(/ff \Lé F s 1

if (spec_cond) { // teach the HW that this is true/

______unsigned char value = *(unsigned char @// pointer to the secret
/‘m&s(&daxff)*OxlOO]); // data is in my address space (stride of 256)

}

\

* Now determine what data item was accessed based on what is now
in the cache. For each potential value record how long it takes to

access the data.

time = rdtsc();
maccess(&
delta = rdtsc() - time;

* The value with the fastest delta time exposes the secret.



lllustration
s ¢ v<




What can Ptr point to?

 What if ptris a legal address? — works fine

 What if ptris anillegal address? — raise an exception



Putting it all together

. Teach the HW to predict the branch (may not be necessary

given if the HW automatically does pipelining across
branches). T

. Flush the cache, é.g., CFLUSH().

. “Trick” the HW to do load the cache based on the secret value.

But don’t raise an exception now by having spec_cond be
FALSE J

. Scan through memory to see what part of data was loaded
into the cache.

. Rinse and repeat.



lllustration



Possible fixes

Optimizations and caches work great, except when they don’t or
when they leak information.

1. Remove Cache, or branch prediction, or pipelining.

e
—

2. Don’t rely on protection bit in the PTE to stop users from
accessing kernel data, i.e., redo how the Operating System
uses page tables.



